Menu
eBooking Concepts
  • Home
  • Privacy Policy
  • Contact
  • Cookie Privacy Policy
  • DMCA
  • Terms of Use
eBooking Concepts

Applied Survival Analysis Using R

Applied Survival Analysis Using R PDF Author: Dirk F. Moore
Publisher: Springer
ISBN: 3319312456
Category : Medical
Languages : en
Pages : 226

Book Description
Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.

Applied Survival Analysis

Applied Survival Analysis PDF Author: David W. Hosmer, Jr.
Publisher: John Wiley & Sons
ISBN: 1118211588
Category : Mathematics
Languages : en
Pages : 416

Book Description
THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.

Applied Survival Analysis

Applied Survival Analysis PDF Author: Chap T. Le
Publisher: Wiley-Interscience
ISBN: 9780471170853
Category : Mathematics
Languages : en
Pages : 280

Book Description
This concise, application-oriented text is designed to meet the needs of practitioners and students in applied fields in its coverage of major, updated methods in the analysis of survival data. Includes analysis of standardized mortality ratios, methods for proving attenuation of healthy worker effects, ordinal risk factors and other new areas of research. Timely and diverse case studies are presented, plus a complete data set on ESRD patients on hemodialysis. Moderate level of mathematics required.

Reliability and Survival Analysis

Reliability and Survival Analysis PDF Author: Md. Rezaul Karim
Publisher: Springer
ISBN: 9811397767
Category : Medical
Languages : en
Pages : 252

Book Description
This book presents and standardizes statistical models and methods that can be directly applied to both reliability and survival analysis. These two types of analysis are widely used in many fields, including engineering, management, medicine, actuarial science, the environmental sciences, and the life sciences. Though there are a number of books on reliability analysis and a handful on survival analysis, there are virtually no books on both topics and their overlapping concepts. Offering an essential textbook, this book will benefit students, researchers, and practitioners in reliability and survival analysis, reliability engineering, biostatistics, and the biomedical sciences.

Survival Analysis by Example

Survival Analysis by Example PDF Author: Faye Anderson
Publisher: Createspace Independent Publishing Platform
ISBN: 9781540314352
Category :
Languages : en
Pages : 40

Book Description
This is an applied handbook on survival analysis (also known as reliability or duration analysis) with annotated examples using S-Plus or R. This is the first book ever explaining survival analysis by example and is intended for users at all levels. The examples can easily be replicated using other software. Key topics include exploratory analyses, parametric, non-parametric and semi-parametric models, and model selection.

Biostatistics explored through R software: An overview

Biostatistics explored through R software: An overview PDF Author: Vinaitheerthan Renganathan
Publisher: Vinaitheerthan Renganathan
ISBN: 935493658X
Category : Medical
Languages : en
Pages : 107

Book Description
The term Statistics and Data is now familiar to most of us even though we are related to different fields such as Clinical, Biology, Business & Management, Engineering and Physical Sciences. Statistical methods are being applied in different fields including the emerging fields such as Machine Learning, Natural Language Processing and Artificial Intelligence because of the fact that each field deals with data in one form or the other. Statistical methods help decision makers to arrive at evidence based decisions by collecting, analyzing and interpreting the data. Biostatistics is a branch of statistics which is applied in the biomedical domain and it includes clinical and biological fields. Biostatistical methods include descriptive, inferential and Statistical modeling tools. Descriptive statistical tools help us to draw information and summary about the data in terms of measures of central tendency, measures of dispersion, measure of skewness and underlying probability distributions. Inferential Statistical tools help us to estimate, test the hypothesis and draw inferences about the parameters of the data. Statistical modeling tools help us to study and estimate the relationship between the variables. The book starts with the introduction of concepts in biostatistics and moves on to explore descriptive and inferential statistical tools using R Open Source Software. It then explores statistical modeling tools such as regression analysis and survival analysis. The book also covers the role of Biostatistics in the clinical trials process. Clinical trials are scientific experiments which are conducted in different phases. It involves testing of drugs and clinical procedures for treating different diseases and conditions among a sample of participants before rolling out in the market. Biostatistics tools help clinical trial researchers in deciding about the study design, sample size and analytical methods. The data set used in the book can be downloaded from Author’s Website.

Methods and Biostatistics in Oncology

Methods and Biostatistics in Oncology PDF Author: Raphael. L.C Araújo
Publisher: Springer
ISBN: 3319713248
Category : Medical
Languages : en
Pages : 348

Book Description
This book introduces and discusses the most important aspects of clinical research methods and biostatistics for oncologists, pursuing a tailor-made and practical approach. Evidence-based medicine (EBM) has been in vogue in the last few decades, particularly in rapidly advancing fields such as oncology. This approach has been used to support decision-making processes worldwide, sparking new clinical research and guidelines on clinical and surgical oncology. Clinical oncology research has many peculiarities, including specific study endpoints, a special focus on survival analyses, and a unique perspective on EBM. However, during medical studies and in general practice, these topics are barely taught. Moreover, even when EBM and clinical cancer research are discussed, they are presented in a theoretical fashion, mostly focused on formulas and numbers, rather than on clinical application for a proper literature appraisal. Addressing that gap, this book discusses more practical aspects of clinical research and biostatistics in oncology, instead of relying only on mathematical formulas and theoretical considerations. Methods and Biostatistics in Oncology will help readers develop the skills they need to understand the use of research on everyday oncology clinical practice for study design and interpretation, as well to demystify the use of EBM in oncology.

Bayesian Cost-Effectiveness Analysis with the R package BCEA

Bayesian Cost-Effectiveness Analysis with the R package BCEA PDF Author: Gianluca Baio
Publisher: Springer
ISBN: 3319557181
Category : Medical
Languages : en
Pages : 168

Book Description
The book provides a description of the process of health economic evaluation and modelling for cost-effectiveness analysis, particularly from the perspective of a Bayesian statistical approach. Some relevant theory and introductory concepts are presented using practical examples and two running case studies. The book also describes in detail how to perform health economic evaluations using the R package BCEA (Bayesian Cost-Effectiveness Analysis). BCEA can be used to post-process the results of a Bayesian cost-effectiveness model and perform advanced analyses producing standardised and highly customisable outputs. It presents all the features of the package, including its many functions and their practical application, as well as its user-friendly web interface. The book is a valuable resource for statisticians and practitioners working in the field of health economics wanting to simplify and standardise their workflow, for example in the preparation of dossiers in support of marketing authorisation, or academic and scientific publications.

Heart Rate Variability Analysis with the R package RHRV

Heart Rate Variability Analysis with the R package RHRV PDF Author: Constantino Antonio García Martínez
Publisher: Springer
ISBN: 3319653555
Category : Medical
Languages : en
Pages : 157

Book Description
This book introduces readers to the basic concepts of Heart Rate Variability (HRV) and its most important analysis algorithms using a hands-on approach based on the open-source RHRV software. HRV refers to the variation over time of the intervals between consecutive heartbeats. Despite its apparent simplicity, HRV is one of the most important markers of the autonomic nervous system activity and it has been recognized as a useful predictor of several pathologies. The book discusses all the basic HRV topics, including the physiological contributions to HRV, clinical applications, HRV data acquisition, HRV data manipulation and HRV analysis using time-domain, frequency-domain, time-frequency, nonlinear and fractal techniques. Detailed examples based on real data sets are provided throughout the book to illustrate the algorithms and discuss the physiological implications of the results. Offering a comprehensive guide to analyzing beat information with RHRV, the book is intended for masters and Ph.D. students in various disciplines such as biomedical engineering, human and veterinary medicine, biology, and pharmacy, as well as researchers conducting heart rate variability analyses on both human and animal data.

Handbook of Regression Analysis With Applications in R

Handbook of Regression Analysis With Applications in R PDF Author: Samprit Chatterjee
Publisher: John Wiley & Sons
ISBN: 1119392373
Category : Mathematics
Languages : en
Pages : 384

Book Description
Handbook and reference guide for students and practitioners of statistical regression-based analyses in R Handbook of Regression Analysis with Applications in R, Second Edition is a comprehensive and up-to-date guide to conducting complex regressions in the R statistical programming language. The authors’ thorough treatment of “classical” regression analysis in the first edition is complemented here by their discussion of more advanced topics including time-to-event survival data and longitudinal and clustered data. The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: Regularization methods Smoothing methods Tree-based methods In the new edition of the Handbook, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. Of interest to undergraduate and graduate students taking courses in statistics and regression, the Handbook of Regression Analysis will also be invaluable to practicing data scientists and statisticians.

Popular Books

  • The Hills and the Corn
  • Engineering Noise Control
  • Helping Students Motivate Themselves
  • Information and the Modern Corporation
  • Study Guide for Pathophysiology
  • PHP Ajax Cookbook
  • NRP Pocket Card, 2016 (Pack of 10)
  • Head and Heart
  • This House
  • Jet Speaking Activities
  • Modern Psychotherapies
  • Multisensor Fusion
  • Domain-Specific Model-Driven Testing
  • Elizabeth the Queen
  • Fighting for the Bucks
  • Messages of Hope
  • Race to the Stratosphere
  • The Shoe Industry
  • Discourse, Tools and Reasoning
  • The Blockchain Developer
©2023 eBooking Concepts | Powered by WordPress and Superb Themes!